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We consider the problem of the optimal control of the terminal state of a linear 
system containing random perturbations in the form of Gaussian white noise. 

We propose a method for the approximate solution of Bellman’s equation for one 
class of such systems in the case when the solution of the deterministic Bellman 
equation has discontinuities of the first kind in its values or in the values of its 

derivatives. As an application of the results obtained we give an approximate 
solution of Bellman’s equation corresponding to one model problem in the con- 
trol of entry into the atmosphere (see [l. 21) and we compare the result obtained 
with the results of the numerical calculations in p2]. Some methods for the ap- 

proximate solution of Bellman’s equation have been studied earlier, for example, 

in [3 - 61. Asymptotic expansions with respect to a small parameter, being the 
noise intensity, were constructed in [4 - S] for the case when the deterministic 
Bellman equation corresponding to a system without random perturbations has a 
smooth solution. Exact solutions of Bellman’s equation were obtained in [3] in 
certain cases when the system has a dimension of one. 

1. Statement of the problem. Bellmrn’r equ&tion. Let theequa- 
tion describing the motion of a system have the form 

dxidt - a (z, y, t) + 2, (x., Y, t)u (1.1) 

Here 0 < t <.i T, 5 is a scalar, IC is the control function taking values in a convex 

closed set, 1 u (t) / G; p (t), y = (y, , . . , r/J is a vector-valued function satisfying 
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the equation 
d!.&t = c (r> + d (t>y + ae (5, 11, QE (1.2) 

Here c (t), d (t) are diagonal matrices of dimension n, e (2, y, t) is a given matrix, 

(5 is the random perturbation vector, E is a small parameter, 0 < E < 1. The func- 
tions a, b and the elements of matrices c, d, e are taken to be infinitely smooth func- 

tions of their arguments. The random perturbation vector is assumed to be a Gaussian 
white noise with unit intensity. The initial values J: (to) - x0, y (t,) = y, being 
known, we are required to construct a control method minimizing (or maximizing) the 
mean of a scalar function 9 [X (t)] of coordinate x at the terminal instant t r T. 
The function 9 [I (t)] gives some measure of the deviation from a specified position 

at the end of the process. 

If there are no random perturbations, we can find a solution y (I/~, t) of system (1.2). 
and the system (1. l), (1.2) reduces to the scalar equation 

dxldt == n (X, y (yo, t), t) + b (Tc, y (y,, t), t)u (1.3) 

Problem (1.1). (1.2) models the motion of a controlled plant depending on the measur- 
ment of the n parameters gk (t), which can be deviated from certain prescribed values 

by random perturbations, Among problems of such kind we may include, for example, 
the problem of controlling a motion in a random medium. 

Bellman’s equation for problem (1. I), (1.2) has the form 

S, = min (b (z, y, T) 21. S,]- + a (z, y, z) S, -j- 
I u I < P (7) 

with the initial condition 

(1.4) 

(1.5) 

Here s (z, 21, r) is Bellman’s faction, T - t = z is the reverse time. The sub- 

scripts on the function 8 denote the taking of the corresponding partial derivatives, 
ck and dk are the diagonal elements of matrices c and d. Later on we shall use the 
notation 7% 

reconing that the condition n 

x f&&j > OF % + 0 (1.6) 
i, j=l 

is fulfilled for any real vector E = (ii, . . . g,),. 
We introduce the new variable 

zk = yk exp [i dh. (A) dj~] -5 ck (A) exp [j d, (A,) dh,] dh 
70 to 30 

z. = T - t,, k=l....,n 

By computing in (1.4) the operation of taking the mi~mum, we obtain 

min (b (5, y, t) US,) = - P (r) I b (s, Y, ~6) S, I - J’ (2, Y, r,.SJ 
I ZJl<i (7) 

(1.7) 
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U= 

i 

P (Q, sign tbSJ < 0 
- p(z), sign (bS,) > 0 (1.8) 

With due regard to (1.7), (1.3) the boundary value problem (X.4), (1.5) takes the form 
n 

s CJG 2, 0) = 9 (4 (I .9) 

Here S is Bellman’s function of the variables (2, z, T), defined in the region 

The functions obtained from the functions a, b, fir by the change of variables {l. 7) 

have been denoted by al, bl, fi jl , respectively. 
Note 1. The subsequent discussions remain valid also in the case when Eq. (1.1) 

additively contains a random perturbation in the form of Gaussian white noise of unit 

intensity with a small parameter F, i. e. 

dx/dt -= a (fc, y, t) -i- h (IL, Y, 9% + eel (5, 9, Q&i 

Here E1 is Gaussian white noise independent of E, e, (2, y, t) is some infinitely smooth 
function of its arguments. 

Note 2. An existence and uniquen~s theorem for the solution of problem (1. l), 

(1.2) was proven in 171. 

2, Solution al ths detsrmlnf#tic problem. Determinrtlon of 
the chrrscterf#tics of the detetmfnf8tfc equrtfoa. We assume that 
we know the Bellman function ,Y ~rr~~uding to the deterministic problem (1.3), and 

Here A” (s, z, z) is some continuous function of its arguments. The functions S”K, 
#Q I=: 1, 2, continuous outside the set A”, are constructed such that the function 8” is 

subject to discontinuities of the first kind in its own values or in the values of its deri- 
vatives on the surface A” := 0. It is clear that such a case corresponds to a discontinu- 

ous function Q (1~) of initial values. Further, we assume that the function s” is defined 

for all values of 5. Bellman’s equation corresponding to the deterministic problem has 

the form S,” = - p (f) 1 b’S,b 1 _I- a“Y,r (2.2) 

s- (x, 2, 0) z.- 4, (5) (2.3) 

From the theory of partial differential equations we know that in equations of hyperl 
bolic type the discontinuities of the initial values and of its derivatives are spread over 
the characteristics, therefore, it is natural to expect that in spite of the nonlinearity the 

surface A0 = 0 is the characteristic surface for Eq. (2.2). However, in the case of Eq. 
(2.2) the concept of a characteristic surface itself is needed in the definition. Indeed, 
in this case the equation of the characteristic surface depends upon the sign of the ex- 
pression (UT,*) and, by the same token, on the solution of Eq, (2.2) itself, but since So 
can be a step function (see [ 1, 21) taking the value zero where A” z< 0 and unity when 
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A” > 0, it is not clear in this case what sign (bS,“) means. Therefore, we carry out the 
following additional constructions. 

We consider the fundamental solution of the equation pTp = Ii, p2 p,rsp, /J > 0, 
having the form 

(2.4) 

and we construct the function jm 

SW (z, 2, z) = c 
s” (h, 2, z) pE” (z - a, z) ah , 

--co 
Here S” ( h, z, a) is the function defined by equality (2.1) and is a solution of deter- 
ministic Eq. (2.2). From the properties of the fundamental solution it follows [8] that 

a) S@ is infinitely differentiable with respect to z in 52; 

b) SP --t S”, S,k-+ S,” as p--f 0 in the sense of convergence in the space of 

summable functions ; 
c) SF (d, 2, 0) = S” (5, 2, 0) = II, (4 

Let us consider the function F (2, Z, 7, S,p) defined by equality (1.8). For every 
fixed ~1 > 0 the function bS,P takes nonnegative values on a certain set and strictly 
negative ones on the complement of this set in 51. Thus, for each ~1 the region 52 is 

divided into the regions !&+ = {z, z, T: VS,P > O} and Q,- = (5, z, ‘t 1 
blS,p < 0). We assume that in QZ,+ Eq. (2.2) has the form 

S,” = - p (z) b?!?,’ + alSxo 

and in region Q,-., the form 

S,” = p (7) b?S,” + alSxo 

In each of the regions Q,+ and Q,- these equations have families of characteristic SUP 

faces which are given by the equations q = A,+ (2, Z, z), 11 = A,- (z, z, ‘c), q = 
con&, A,’ and A; are some smooth functions of their arguments, From continuity 
considerations it is clear that the characteristic surfaces corresponding to the regions 

Q,+and Q2,- are matched in continuous fashion along the boundary of the region Q2,’ 

for each corresponding value of TJ . A family of surfaces A, (5, z, T) = q, q =const, 
which we call the p-characteristic family of surfaces of Eq. (2.2). is formed for each p. 

Assumption 1. There exists a value p* such that the p-characteristic families 

of Eq. (2.2) coincide identically for 0 < p < CL* , i. e. 

A, (5, 2, T> = A (z, z, a), 0< p < p*. 
Definition 1. The family of surfaces q = A (z, z, T), q = const, is said to 

be characteristic for Eq. (2.2). 
Assumption 2. The surface A” (2, z, z) = 0, appearing in the determination 

of the solution (2.1) of the deterministic problem (1.4), is characteristic in the sense of 
Definition 1. 

Without loss of generality we can assume that surface A” (5, z, T) = 0 corresponds 
to the constant value 11 = 0, i.e. 0 = 7 = A (z, z, z) = A” (5, 2, z), and that 
the values of the constant rl defining the characteristic surfaces of Eq. (2.2) vary within 
the limits - ~\<rl<;<%\<+ 00. From (2.1) it follows that the solution 
of deterministic problem (1.3) can be written in the form 

so (G 2, r) = so (rl) = 
{ 

se’(q), r < 0 
lp? (r), q > 0 (2.5) 

Hence follows 
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so (5, 2, 0) = so (q) jr+ = 4 (x) 

Assumption 3. The functions L?, k = 1, 2 are such that 

a) S,’ (rl) > 0, r1#0 

b) S,” (+ 0) - S,‘(- 0) > 0. 

Here the subscript VJ denotes the taking of the derivative of the function S’,S,,’ (-& O)= 
lim Sno as 7 --f f 0 , respectively. 

Note 3. If in the original statement of problem (1. l), (1.2) we look for not the 
minimum but the maximum of the function $ [z (T)], then conditions (a) and (b) in 
Assumption 3 take the form 

a ‘) S,’ (7) < 0, r#=o 

b’) S,,O (+ 0) - S,’ (- 0) < 0. 

From the definition of the characteristic surfaces of Eq. (2.2) we see that in them 
there can be conic points when (5, z, r) is such that b (2, z, T) Sxp = 0, 0< p < 

PL”. By construction this set is a limit set for the set Q,-. 
Definition 2. The limit of the values of the derivatives of the corresponding 

variables as the point (s, z, r) belonging to region Qt tends to the point (z* , Z* , r*), 
is called the derivative of the function 1 = A (z, z, a), being a characteristic surface 

of Eq. (2.2) at the conic point (z* , z* , T*). 
Assumption 4. The condition 

is valid for all (5, z, r) E Q . 
Let US consider an example illustrating the assumptions and definitions we have intro- 

duced. Let dx / dt = u -i- E, x is a scalar, 0 < t < T, E (t) is Gaussian white noise, 

1 u (t) [ < po = const. The function 9 [x (T)l is given by the equality 

0, I I< 10 q(x)={ 1, Ixl>Zo 

Bellman’s equation has the form 

S, = - PO I 8, I + l/2 S,X, s (x, 0) = 4 (2) 

The function S”, being the solution of the deterministic problem, has the form (see [S]) 

We write the Bellman equation corresponding to the deterministic problem 

S,O z - PO I SLIT0 I, S” (I, 0) = qJ (2) (2.7) 

Having set up the function Sr appearing in the construction of the p-characteristic sur- 

faces of the deterministic equation, we have 

s’* zz? 1 - 
s 

pP(x- A, t)dA 
I A I<k+w 

Here JP(x, T) is the fundamental solution of the equation Sr = l/z~L2SXXP, defined by 
formula (2.4). 
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We consider the regions 62; = (2, z : 8: >, 0) and Q; = (2, z: St < 0). Differentiat- 
ing ,P with respect to r, we obtain 

Hence we see that for alI p > 0 the sets &$, coincide with the halfplane z > u and the 

set 621, with the halfp~ne I < 0. Co~equently~ the conditions of Assumption 1 are ful- 
filled and the p-characteristic Eqs. (2.7) coincide identically for all P >, 0 and are 
given by the expressions r~ = I - PO T when x >, 0 and n = - (X -t- PO‘@ when x < 0, 

q = con&. By virtue of Definition 1 these straight lines are the characteristic Eqs.(2.‘7). 

The staight lines E, = x - ~0% and 1, = - (x + POT), defining the lines of discontinuity 

of the function S”, are the characteristics of the deterministic Bellman equation (2.7), 
originating at the points (2 = I,, T = 0) and (z = - 1,, z = O), and thus, Assumption 
2 is fulfilled. It is easy to verify that the conditions of Assumption 3 are fulfilled. From 

Definition 2 it follows that &I i &c = 1 when 2 >, 0 and &I i &z = -1 when x < 0, 

i. e. Assumption 4 is fulfilled. 

3, Conntruction of the rpproxfmrtr rolution. For any point(Z, .&4 
we seek the solution of the boundary value problem (X9), (1.10) as a function of the 
values of the constant T-J such that TJ = A (5, z, ‘c) and of the values of z, z. By vir- 

tue of Assumption 4 and by the implicit function theorem it follows that 5 = s (q, z, 
‘t); therefore, the solution of problem (1.9) can be treated as a function of the variables 

(‘rlt 2, r)- We denote this function by Se (q, z, I;). We set ?ji = VI / E, The following 
relations are valid : 

i,j=l,...?Z 

Taking into account equality (2.5) which defines the solution of the deterministic probw 

lem, we can assume that 
s”,, (%Z, r) > 0, @,z, r) E 52 (3.1) 

Therefore, in order that the desired function S satisfy Eq. (1.9) it is necessary that 

f s& 2 -9 + + s’,, & i- -+ s&l1 2 + f s”,,, -g 

j dZi t j I 
i + %] 

Here the functions obtained under the change of variables x = s (VI, Z, r) have been 
denoted by the same letters. 

Since q = A (z, z, r) are the characteristics of the deterministic Bellman equation 

As a result we obtain that the function 8” should satisfy the boundary value problem 
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Here 

We seek the solution of problem (3.2) in the form of a power series 

S” (r,, 2, r) = s (Q, 2, r) + asa (qt, 2, a) + 0 (e2) (3.3) 

Substituting the function &‘I, represented in form (3.3), into Eq. (3.2)‘ we obtain that 

the function 8’ should satisfy the boundary value problem 

S’ @II, 2, z> I+=* = 9 (x> (3.4) 

and the condition 
s’,, > 0 (3.5) 

The function s2 should be chosen such that 

Let us assume that the functions S and Sa, satisfying the boundary value problems 
(3.4) and (3.6). respectively, have been found. We consider the function W = S f 
~5’~. The following assertion is valid. 

Theorem. Let condition (1.6) be fulfilled and let the function SE be a solution 

of problem (3.2). satisfying condition (3.1). Then 

I SE - W 1 = 0 (9) 

The proof relies on the following lemma which follows directly (after the substitution 
T--l= 2) from Theorem 10 in [9] (see p. 16). 

Lemma. Let a continuous and bounded function be a solution of the following 
Cauchy problem : 

where the matrix ofj is positive definite for all z E (0, I”], r 6? R” .We have 

1 vo (2) I Q KI, 16 (2, z) 1 < Kz, 1 Y @. 2) 1 d KS, 

and the coefficients oij, 08 (i, i = I,..., n) satisfy the conditions 

1 aij (T, 2)1 f KI (II x  11 ’ + i)* I f)i tzv 2, I Q  R6 ( Ii x  II + ‘1”’ 

Here Xl,..., K5 are nonnegative constants. Under these assumptions 

1 v (z, 2) I < (K, + K,T) exp [K,‘d, 0 < 7 < T, 2 E fin 
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Indeed, we obtain the required estimate immediately from the lemma by substituting 
the function Se - W into Eq. (3.2) and by using the fact that 

(SC - W) I*+ = 6 

Let us consider certain possible cases of the realization of boundary value problems 

(3.4) and (3.6). 
1”. The functions ~5’~ and Es are functions of the valiables z and ‘6, the values 

of q E ( - 00, + co). Boundary value problem (3.4), in this case, takes the form 

S,” = f J% (Z,T) Kwl19 S’ (r)l, 2, z> LO = 4 (4 (3.7) 

The fundamental solution of the problem is determined by the expression 

El’ (z, z) = \ El (z, h) dh 

0 

Let so (q) be the solution of the corresponding deterministic Bellman equation. Then 
the solution of boundary value problem (3.7) is given by the formula 

SW 

Indeed, by a direct check we can be convinced that the function &‘I, constructed from 

formula (3.8). is a solution of Eq. (3.7). From the properties of a fundamental solution 
it follows that boundary condition (3.7) is fulfilled. let us verify the. fulfillment of con- 
dition (3.5) +,m 

S*,i = - 
s[ 

--CC 

Here the derivative of function 5’” is ~de~to~,in the generalized sense. By virtue of 
the conditions in Assumption 3 we obtain that Sri,,, > 0. 

Boundary value problem (3.6) takes the form 

ST2 = I/&, (2, z> S:,n, + G (2, r, Sl), s2 (Yi, 2, r) 17=0 = 0 

The solution of this problem is given by the formula (see [ 101. for example) 
r-!-m 

s2(tjl,z,z)= f ij G(h,z,h,,Sl(h,z,hl))p(rll- h,z,r - ~~)~~d~~ 
o---o0 

If the values of the constant ?-l defining the families of characteristics of Eq. (2.2) vary 
within the following intervals : 

then in each of these cases it is necessary to specify the boundary conditions at the end 
points ‘tj = Q, ?j = ?jz and q = ?li, 11 = Q ,respectively. Here can arise the first, 
second or third boundary value problem for the parabolic equation (3.4). Methods for 
solving such problems have been worked out very well and have been set forth, for ex- 
ample, in monographs [8, lo]. 
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2’. The functions E, and Ez depend upon the variable Q. In this case the me- 
thod for constructing the fundamental solution, proposed by Levy (see [lo]), can be ap- 

plied to solve the boundary value problems (3.4) and (3.6). As a result the boundary 
value problem reduces to the solving of an integral equation of the second kind which 

can be obtained by the method of successive approximations. 
Note 4. If in the original statement of problem (1.1). (1.2) we look for the maxi- 

mum of the function 4 [z (T)], then in addition to conditions (a’), (b’) of Assumption 
3, condition (3.1) takes the form 

SQE (rll, %, 7) < 0, (z, 2, T) E Q 

4. Approximate rolution of Bellmrn’a equation for li model 
optimal control problem of entry into the atmosphere. Let the 
equation of motion of a material point have the form 

$2 / dt2 = U (0 g (t) (4.1) 

Here 0 < t < T, u (t) is the control function, 2 is a scalar, j u (t) I< u,,, g (t) 
is a random function representing a stationary Gaussian process with unit mean and cor- 

relation function 
M{[E&)-l][r;(t+t)-l]}=G2e-h”, z>o 

characterizing the behavior of a random medium in which the motion takes place. The 
initial values x (0) and 5’ (0) being known, we are required to construct a control 

method which would maximize the probability of falling into the region [ - 6, +a], 
6 > 0 on the z-axis at a terminal instant 2’. It is assumed that E (t) is a Markov 
process. 

Then the control, optimal in the sense indicated, depends on z, 2’ and E. We set 

21 = z + X’ (T - t), Y = g. Equation(4.1) is written as 

2,: = (T - t) Yu, Y’ = - k (Y - 1) + 5 r/t%- r;, 

Here ~1 is Gaussian white noise. The last equation must be understood in Ito’s sense. 

Bellman’s equation and the initial condition in this case have the form [l, 21 

& = ,;~xO{~Yz&,l - k (Y - 1) S, + +%,u (4.2) 
* 

(4.3) 

Here T - t = ‘G is reverse time. Computing the maximum in (4.2). we obtain 

u = u. sign (Y&J, r=&ZY&1 = uor I YSX, I 

We introduce the new variable y1 = (y - l)@. In the region 

a== (~1, ~11 r:- o~‘<~~<+ 00, --oo<y~<+ 00, O<,r<T} 

the boundary value problem (4.2), (4.3) takes the form 

s, = UOZ [(I + y&q s,, 1 + 9 e2ksSy,lJ, 

s h, 917 0) = $ (4 (4.4) 
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In the deterministic case the quantity y, modelling the fluctuations in the atmosphere, 
is a constant and Bellman’s equation is written as 

ST” = nor 1 ?A,” I, so c% Y, 0) = Q w (4.5) 

Here 8” is Bellman’s function corresponding to deterministic problem (4.1). The solu- 
tion of the deterministic problem is given by the formula 

s”= 

i 
1, j%l<S +112w21Y I 
0, I Zl I > 6 + 1/!zw2 I Y I 

(4.6) 

Formula (4.6) reflects the fact that the region, from which we can fall into the interval 
[ - 6, S] by the instant t = T, contracts down to the very interval [ -8, 6] as the 

time t < T increases (i. e. as the value of T = T - t decreases) ; the boundary of 
this region for each fixed value of i is given by the equation (x1( = 6 + ‘/sue? I y I 
being, as is shown later, the equation for the characteristics originating at the points 
(X1 = 6, ‘G = O), (Xl = - 6, T = 0). 

In accordance with Sect. 2 we consider the fundamental solution of the boundary 

value problem 
PsP = v2~2P~,,l 

and we construct the function +oJ 
,P (xi, y, z) = l S” (1, Y, z) pv @I- A, 4 da (4.7) 

-00 

Here pP (21, z) is defined by formula (2.4). Using (4.6) the last integral can be written 

Therefore, a 

SrXP = [2p JG1-l exp - 
C 

(z1+ da 

Ii 

4xla 
4P% 1- expp 

1 

Hence we see that for all ~1 > 0, S!& < 0, when zl > 0 and Sz”, >O, when zi < 0. 
Consequently, the requirements of Assumption 1 are valid and, by virtue of Definition 1, 
the characteristics of Eq. (4.5) are given by the equations Q = 1 z1 ) - V2 u# 1 y 1, 
q = con&. The solution of Eq. (4.5) defined by equality (4.6) is written in the follow- 
ing form : 

and thus, the conditions of Assumption 2 are fulfilled. Further, it is easy to verify that 

conditions (a’) and (b’) of Assumption 3 and condition (2.6) of Assumption 4 are filfilled. 
In accordance with Sect. 3 we seek the solution of problem (4.4) as a function so (71, 

y,, T) of values of ‘1 such that tl = 1 x1 1 - 1/2uoz2 1 y I of the quantities yl, T. 
Here r~ = 1 + yle-ks is a variable quantity ; we assume that the fixed quantity CT is 

sufficiently small. We set ql = q / o and we seek the solution as an asymptotic series 
in powers of o 

S” = s (rll,YlJt) + 5S'h,Y,,~) + o(52) 

By virtue of Definition 2 

arl 
a.z1= i 

I, “l>O aq 
- 1, Xl<0 ’ ayl = + u0T2ck+ sign (1 + ?jle-kT) 

From (3.4) it follows that the function S1 should satisfy the boundary value problem 
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SSl== -$k (+Uo’2)aS’,,,,, S’(rll, Yl, -c’) I-0 = 11) (%I I-0 (4.8) 

should be fulfilled by virtue of Note 4. Boundary value problem (4.8) is to be solved in 
explicit form. To do this it is necessary to write down the f~damenral solution of prob- 
lem (4.8) and to examine the convolution of this solution with the solution of the deter- 

ministic Bellman equation just as was done in Case 1 in Sect. 3. As the result we obtain 

By introducing the new variable Z, we obtain 

By direct verification we can be convinced that the function 8’ is the solution of bound- 
ary value problem (4.8) and satisfies condition (4.9). The function sz must be chosen 
such that 

From the uniqueness of the solution of the Cauchy problem for the heat conduction 

equation it follows that Sa = 0. By vir- 
tue of the theorem in Sect. 3, formula 

(4. 10~gg. tves the approximate solution of 
problem (4.4), (4.5). differing from the 
exact one by a quantity of the order 

0 (a2). Figure 1 shows a comparison of 
the solution obtained by the approximate 

formula (4.10) and of the results of nume- 
rical calculations in [2]. The solid line 
depicts the curves obtained by numerical 
calculation. The curves i! and 2 corres- 
pond to the values y==o.$5 and 1.8 with 

7; = 1.4, a = 0.25, 6 = 1, k = 1, 
UO = 1. The dotted lines are obtained 
by using the approximate formula (4.10) 

Fig. 1 and correspond to the same values of the 
parameters y, 7, cr, k, uot as for the 

curves obtained numerically. 

The author thanks F. I.,, Chernous’ko for valuable conversations and constant attention 
and G.K. Pozha~tski~ for discussions on the work. 
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ON MINIMAL OBSERVATIONS IN A GAME OF ENCOUNTER 

PMM Vol. 37, Np3, 1973, pp. 426-433 
A. A. MELIKIAN 

(Moscow) 
(Received October 12, 1972) 

We consider the differential game of the encounter of “isotropic rockets” Cl]. 
Its solution, under the condition of complete informativeness of the players, has 
been constructed in p]. We investigate the question of the minimal information 
needed by the players to realize 
game problems with incomplete 

1. Let the motion of players X and 
be specified by the relations 

x: 51’ = 22, 5s. = u, 

a saddle situation. The statement of similar 
information has been given in [S]. 

Y on a fixed time interval [O, TI, T > 0 

Xl(O) = ZlOt 22 (0) = 2s”; Y (0) = Y" (1.1) 
Here x1, x2, u, y, 2, are vectors of arbitrary like dimension . Player X has the follow- 
ing information available to him. At each instant t E [O, Tl he knows the exact value 
of the natural phase coordinate vectors zr (t), z2 (t). Player X observes the opponent’s 


